

Entropy is good

Patented Quantum Random Number Generator Three components are required to make hackproof encryption:

- 1. a way to produce random numbers the unique keys to convert a message
- 2. an algorithm that converts the message into a string of meaningless characters
- 3. a channel to securely deliver the first ingredient to the intended recipient without anyone else gaining insight

The second and third components are well-established and widely used by cryptographers, programmers etc.

Tomorrow's technology today

• Quantum Computers Will Break the Internet, but Only If We Let Them

https://www.rand.org https://media.nature.com

• The Future of Cybersecurity are the Quantum Random Number Generators (QRNGs)

https://spectrum.ieee.org

- Truly random numbers (delivered in billions of binary digits) provide an unbreakable toolset for cryptography
- QRNGs are essential for providing quantum-unbreakable encryption:
 - for internet banking
 - for health-care privacy
 - for internet shopping
 - for internet devices
- QRNGs are crucial for blockchain security (cryptographic nonce)

Locality for privacy and secrecy

• To ensure the privacy of any communication, cryptography must be local (e.g., use of the so-called Perfect Forward Secrecy)

https://www.keycdn.com

- Cryptographic keys should use a true random number generator *in-situ* (i.e., on the user device)
- Good random number generators must be built into communicating devices (like computers and cell phones)
- The cybersecurity design: QRNGs embedded into a System-on-Chip (SoC)

Technology must be compatible with standard IC manufacturing

Many hardware options are available, but...

Several methods or devices are offered, e.g.,

- Cloud RNG <u>https://www.random.org</u> based on atmospheric noise
- HotBits <u>https://www.fourmilab.ch</u> based on Geiger counter
- Protego ST <u>https://www.protegost.com</u> noise-based key fobs or chips
- ComScire https://comscire.com tunneling leakage in MOS transistors
- qStream https://www.quintessencelabs.com based on quantum tunneling
- Quantis https://www.idquantique.com based on quantum optical randomness
- QN100 https://quside.com based on quantum optical randomness

Most are not easily incorporated into consumer devices The suitable devices (*qStream*, *Quantis*, *QN100*) are not pure quantum as claimed: their entropy sources are prone to external influences like temperature or voltage changes **B** breakable*

* cf. e.g., Abbott A.A. et al. 2014 Non-uniformity in the Quantis Random Number Generator, Centre for Discrete Mathematics and Theoretical Computer Science CDMTCS-472 November 2014 or Hurley-Smith D. and Hernandez-Castro J. 2020 Quantum Leap and Crash: Searching and Finding Bias in Quantum Random Number Generators. Security, 23 (3). pp. 1-25. ISSN 2471-2566.

Our mission

- **RANDAEMON** builds Quantum Random Number Generators:
 - hardware-based, on an integrated circuit (IC)
 - integrated into SoC
 - fabricated using standard chip manufacturing technology
- **RANDAEMON** uses ultimate entropy source:
 - pure beta decay inside nuclei
 - PIN or SPAD detectors
 - auto-correction and randomization in situ
- RANDAEMON aims at high throughput for random bitstream

Why nuclear beta decay?

- The pure quantum process inside nuclei
- Decays are random in time (ticking) and in space (direction)
- Beta radiation (*electrons*) is easily detectable
- The emission of electrons is not affected by normal conditions:
 - acceleration
 - pressure
 - temperature
 - magnetic and electric fields
 - etc. etc.

The use of beta decay is perfectly suited for local, in-situ QRNGs

Safe entropy source

⁶³Ni as a source of randomness:

- pure beta decay: ${}^{63}Ni_{28} \rightarrow {}^{63}Cu_{29} + e^- + v_e$
 - maximum electron energy 67 keV
 - average electron energy 17 keV
 - anti-neutrino is practically non-interacting with anything
- range of 70 keV electrons:

- in the air about 7.3 cm 🖙 there's no radiation at the distance of 3" from a source
- in the water about 78 μ m \square water layer on eyes or in guts is >100 μ m thick
- in the tissue about 68 μ m \square epidermis (dead part of the skin) is typically >100 μ m thick
- in the metallic Cu about 14 $\mu m~$ ${}^{\tiny \mbox{\tiny em}}$ no radiation at all outside of the IC enclosure
- activity per simple device $\leq 3.10^{-5}$ Ci
 - if fully digested (?), the dose absorbed would be about 0.75 mSv/year
 - for comparison: <u>US natural background</u> is about 3 mSv/year; <u>Annual Limit on Intake</u> is 0.5 Sv

No radiation risk during manufacturing, for customers, and recycling

RANDAEMON patented QRNGs designs:

- set of detectors
 - a small number (starting with 1 detector) for simple applications
 - a large number (over 1 million detectors) for demanding applications*
- easily scalable for any application

*Quantum networks need huge amounts of random bits for operation

https://www.zdnet.com

https://www.energy.gov

Structure of "small IC" test PoC design

To make testing easy, NIST set of <u>statistical tests</u> can be built-in

© RANDAEMON Ltd. Ksawerów 21 • 02-656 Warsaw • Poland • office@randaemon.com

RANDAEMON team

CEO: Janusz Borodziński	 Ph.D. in electro-chemistry, Warsaw University 1987-1988 University College, Cork, Ireland – research associate 1991-1993 Université de Sherbrooke, Canada – visiting professor Technical director of Apple IMC Poland 1994-2012 Experienced entrepreneur, consultant, teacher
CFO: Krzysztof Appelt	 Ph.D. in biophysics, Max Planck Institute, West Berlin 1984 – 1985 Assistant Professor UCSD, Dept. of Physics and Chemistry 1986 – 2004 R&D executive positions in the pharma and biotech industry 2005 – 2015 Founder, CEO & President of Great Lakes Pharmaceuticals, Inc. 2018 – 2020 Founder and CEO of Visthera, Inc. 2015 – now Director, Airspeed Equity
CTO: Jan "Kuba" Tatarkiewicz	 Ph.D., D.Sc. in nuclear methods in solid-state physics, Warsaw University Physicist (post-doc at MPI FKF Stuttgart), programmer (Monte Carlo code in ORNL library, localization of Mac OS for Poland), IT director (MIT Lab for Nuclear Science, UCSD) Author of 50+ papers published in refereed journals Several invited lectures at international conferences 20+ patents issued The entrepreneur started 10 companies; recently MANTA Instruments sold to HORIBA Scientific
Technical advisor: Wiesław Kuźmicz	 Ph.D., D.Sc. in solid-state electronics, Warsaw University of Technology Since 1970 worked at Warsaw University of Technology From 1984 to 1985 and in 1989 visiting professor at Carnegie Mellon University Professor emeritus, Warsaw University of Technology Research interests include the physics of semiconductor devices, development of simulation and EDA tools, and design of VLSI circuits for demanding nontrivial applications Author of over 100 research papers and two textbooks

RANDAEMON cooperation

PCI Express card	 RnDity LLC Łódź-based private company Spin-off from Łódź University of Technology Bartek Świercz Ph.D. owner <u>https://rndity.com</u>
Chip design	 ChipCraft LLC Poland-based fabless semiconductor private company Spin-off from Warsaw University of Technology Tomasz Borejko Ph.D. lead designer, vast experience with digital security <u>http://www.chipcraft-ic.com</u>
Fab	 X-FAB Silicon Foundries German company that does prototyping in suitable technologies <u>https://www.xfab.com</u>
⁶³ Nickel	 Institute of Nuclear Chemistry and Technology Aleksander Bilewicz Ph.D., D.Sc. head of the Laboratory of Chemistry of Radioelements <u>http://www.ichtj.waw.pl</u>

RANDAEMON patents' portfolio

Issued

- Tatarkiewicz J.J. 2019 US Patent 10,430,161 Apparatus, systems, and methods comprising tritium random number generator
- Tatarkiewicz J.J. et al. 2021 US patent 10,901,695 Apparatus, systems, and methods for beta decay based true random number generator
- Tatarkiewicz J.J. et al. 2021 US patent 11,036,473 Apparatus, systems, and methods for beta decay based true random number generator
- Tatarkiewicz J.J. et al. 2021 US patent 11,048,478 Method and apparatus for tritium-based true random number generator
- Tatarkiewicz J.J. et al. 2021 Korean patent 10-2289084 베타 붕괴 기반의 진성 난수 생성기를 위한 장치, 시스템, 및 방법
- Kuźmicz W.B. et al. 2022 US patent 11,249,725 Method and apparatus for highly effective beta decay based on-chip true random number generator
- Tatarkiewicz J.J. 2022 US patent 11,281,432 Method and apparatus for true random number generator based on nuclear radiation
- Tatarkiewicz J.J. 2022 EU patent 3,776,179 Apparatus, systems, and methods comprising tritium random number generator
- Kuźmicz W.B. et al. Korean patent 10-2429142 베타 붕괴를 이용한 고도로 효과적인 온칩 진성 난수 생성기를 위한 방법 및 장치
- Tatarkiewicz J.J. et al. 2022 AU patent 2022200920B1 Method and apparatus for highly effective on-chip true random number generator utilizing beta decay

Pending

- Borodziński J.J. et al. 2021 USPTO application 17,687,630 Method for cost-effective Nickel-63 radiation source for true random number generators
- Tatarkiewicz J.J. et al. 2022 USPTO application 17,861,014 Method and apparatus for highly effective on-chip quantum random number generator using beta decay
- Tatarkiewicz J.J 2022 USPTO application 17,897,138 Method and apparatus for highly effective on-chip quantum random number generator
- several of the above issued US patents were applied for in EU, Canada, Australia, and Korea

Thank you for your attention

Ksawerów 21 02-656 Warsaw, Poland office@randaemon.com