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Abstract. We present a novel, computationally simple method of hid-
ing any message in the stream of random bits by using a secret key. The
method is called Bury Among Random Numbers (BARN). A stream of
random bits is produced by extracting the entropy of a physical pro-
cess in a hardware-based true random number generator (TRNG). The
process of placing bits of a message into the stream of random bits is
governed by the number of random bits skipped between subsequent in-
sertions. The set of numbers that correspond to the steps of BARN is
derived from a random number also provided by TRNG. Hence BARN
cipher does not depend on any arithmetic function. We propose an effec-
tive method of computing random keys from a given number of random
bits. We estimate the number of permutations that need to be tested
during a brute-force attack on the new cipher for various key lengths.
Some practical applications for the new class of symmetrical ciphers are
discussed.

Keywords: cryptography · symmetrical cipher · hardware random num-
bers generator.

1 Introduction

While testing a new type of random number generator, we accumulated a large
set of random bits. A stream of bits was produced by extracting the entropy of a
physical process in a hardware-based true random number generator (TRNG) [1].
Thinking about the ways these bits can be utilized, we noticed that it would be
very easy to hide any message inside the set. Thus, steganographic cryptography1

was conceived. In this paper, we outline a very simple method of randomly
inserting bits of a message into a continuous stream of random bits. The method
is appropriately called Bury Among Random Numbers or BARN. In Section 2,
the details of the encryption method are presented. Section 3 describes one of the
possible methods of creation of keys by using a portion of a stream of random
bits. Security analysis of the method is discussed in Section 4: cracking BARN
resembles a search for a needle in the haystack. Section 5 summarizes the paper
and outlines the possible applications of the method, especially when committed
to silicon.
1 stegano [Greek] covered, concealed; crypto [Greek] hidden, secret.

http://arxiv.org/abs/2404.09288v1
https://www.randaemon.com


2 J.J. Tatarkiewicz and W.B. Kuźmicz

2 Encryption algorithm

Generally, any message M in a digital world can be considered as a set of bits.
Let M have µ bits. Let P be a stream of random bits generated by TRNG. The
number of bits available from the stream is much larger than µ. Assuming that
a key K consists of κ natural, non-zero numbers, we can describe the BARN
algorithm as a simple replacement of i-th bit Pi in the stream by j-th bit Mj of
the message, where j ∈ {1, ..., µ}, t = j − ⌊ j−1

κ
⌋ ∗ κ, and:

i = ⌊
j − 1

κ
⌋ ×

l=κ∑

l=1

Kl +

l=t∑

l=1

Kl (1)

The function ⌊x⌋ or floor is also called integer because it leaves an integer
portion of the number x. If µ > κ, then elements of a key K are being reused
cyclically. BARN algorithm is represented by a pseudocode:

Algorithm 1 BARN

Require: P ← stream of random bits

Require: M ← message, µ bits

Require: K ← encryption key, κ elements

k ← 0
i← 0
j ← 0
loop:
j ← j + 1
if j > µ then goto end

k ← k mod κ+ 1
i← i+K(k)
P (i)←M(j)

goto loop

end

Visual representation of the insertion process shows how computationally
simple the algorithm is. The BARN method starts with a stream of random
bits:

Fig. 1. Stream P of random bits.
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For illustration purposes and to maintain clarity, we choose a rather short
message M of only 10 bits:

Fig. 2. Message M .

In the next section, we will discuss methods of creating keys for BARN by
using a stream of random bits and some elementary algorithms. Here, to simplify
our example, we choose a very short key K of just four, quaternary digits:

Fig. 3. Set of random bits P with embedded message M using key K = {1, 3, 2, 1}.

For j = µ Equation 1 provides the total length of the BARN cipher. In the
example, κ = 4, µ = 10 and t = 2 so the length of the cipher is 18. The numbers
at the bottom of Figure 3 show how many bits are skipped between insertions
- these are the elements of the key reused cyclically. We bolded inserted bits to
emphasize the differences between a raw stream and the one with the message
embedded. On average only half of the bits in the random stream are being
changed by the insertion, e.g. the first bit was changed but not the fourth. This
results from the basic property of a stream of random bits, i.e., zero and one
are equally probable in such a stream. After insertion, the proportion of zeroes
and ones in the cipher can change. In our example, among 18 random bits, there
were 7 ones but after insertion, this number increased to 9 or (by chance) the
expected, statistical average. When considering ASCII text files (7-bit encoding),
the number of zeroes inserted will be slightly smaller than the number of ones.
Basic ASCII characters including digits, brackets, etc., use 254 ones and only 229
zeroes. For UTF-16 (UNICODE [2]) files, this proportion will be different, i.e.,
there will be many more zeroes than ones because the encoding table contains
scripts for many languages and many symbols, etc.

The knowledge of the key K is sufficient to decode the BARN cipher - there
is no need to have TRNG available. Thus, BARN is a symmetrical cipher like
e.g. AES [3]. Unlike AES which is a block cipher, BARN is also capable of encod-
ing continuous streams of information. However, BARN is not a typical stream
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cipher because it uses real TRNG (hardware source of entropy). Contrasting sim-
ple stream ciphers like e.g. GRAIN [4], BARN is computationally even simpler:
no arithmetic at all.

3 Creation of keys

The algorithm described in the previous section places few limitations on keys:
a set of numbers Ki forming the key should not contain only ones (such a key
would copy the whole message into consecutive bits of a stream) and none of the
elements Ki can be zero (this would mean copying two bits of a message into the
same bit of a stream). Typically, cf. Diffie-Hellman [5,6] public key system, the
key is expressed in the number of bits that is a power of 2, e.g. 256-bit key. The
keys should be as random as possible. We assume the availability of a stream
of random bits from TRNG, so the method of creating a key starts with the
number of random bits. For example, the set of numbers Ki can be created from
such a random string using different counting systems:

– ternary i.e., base 3 or digits {1, 2} will be used
– quaternary i.e., base 4 or digits {1, 2, 3} will be used
– octal i.e., base 8 or digits {1, ..., 7} will be used
– decimal i.e., base 10 or digits {1, ..., 9} will be used
– hexadecimal i.e., base 16 or digits {1, ..., 15} will be used

Each of the above-mentioned systems requires a different number of subse-
quent bits to denote a digit in the system:

– ternary: 2 bits, [01] and [10], efficiency 1/2
– quaternary: 2 bits, [01], [10], and [11], efficiency 3/4
– octal: 3 bits, [001], ..., [111], efficiency 7/8
– decimal: 4 bits, [0001], ..., [1001], efficiency 9/16
– hexadecimal: 4 bits, [0001], ..., [1111], efficiency 15/16

Here efficiency means the portion of random bits stream that can be used to
create non-zero elements of a key. The number κ of non-zero digits Ki created on
average from a given length of a random stream of bits is presented in Table 1:

Table 1. Average number of elements for various keys.

64-bit 128-bit 256-bit 512-bit 1024-bit

Ternary 16 32 64 128 256
Quaternary 24 48 96 192 384
Octal 18 37 74 149 298
Decimal 9 18 36 72 144
Hexadecimal 15 30 60 120 240

Our algorithms for creating keys K from random bits are simple computa-
tionally. However, each counting system leads to a quite different length of a
cipher depending on the average value of the elements of a key:
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– ternary: average M length enlargement by a factor of 1.5
– quaternary: average M length enlargement by a factor of 2
– octal: average M length enlargement by a factor of 4
– decimal: average M length enlargement by a factor of 5
– hexadecimal: average M length enlargement by a factor of 8

For example, the message M with the length of µ bits will on average require
4µ random bits with an octal key but only 2µ random bits for a quaternary key.
For the same length of a string of random numbers used to create these two
keys, the octal one will provide better security, because of a larger number of
possible permutations. Combining the above-mentioned enlargements with the
number of permutations given in Table 2, it is clear that different schemes will
be suitable for various applications of the BARN:

Table 2. Average number of permutations for various types and lengths of keys.

64-bit 128-bit 256-bit 512-bit 1024-bit

Ternary 6.55E+004 4.29E+009 1.84E+019 3.40E+038 1.16E+077
Quaternary 2.82E+011 7.98E+022 6.36E+045 4.05E+091 1.64E+183
Octal 1.63E+015 1.86E+031 3.45E+062 8.31E+125 6.91E+251
Decimal 3.87E+008 1.50E+017 2.25E+034 5.08E+068 2.58E+137
Hexadecimal 4.38E+017 1.92E+035 3.68E+070 1.35E+141 1.83E+282

4 Security analysis

John von Neumann famously wrote [7]: Any one who considers arithmetical

methods of producing random digits is, of course, in a state of sin. For, as has

been pointed out several times, there is no such thing as a random number - there

are only methods to produce random numbers, and a strict arithmetic procedure

of course is not such a method. This statement excludes arithmetical procedures
from generating good random numbers but it also gives a clear advantage to
hardware TRNG-based cryptography. There is no method of breaking the cipher
other than a brute-force guessing of all possible keys. One example of such a guess
for the cipher in Figure 3 is presented in Figure 4:

Fig. 4. Decryption with guessed key K = {2, 1, 2, 1}.
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The message deciphered with a guessed key K = {2, 1, 2, 1} happens to be
[001100001011] and is not similar to the original message [1110001101] at all, cf.
Figure 2 where the original key was {1, 3, 2, 1}. We assumed that an attacker
knows everything about the system, even the type and random bit length of the
original key but not the key.

A large number of possible keys in the BARN creates a large number of
possible messages that can be guessed. Without knowing the original message,
it is hard to decide which is the real one unless the attacker can toss the same
known message multiple times into the system. Even if this is possible, one can
only guess the key with some level of probability, depending on the number of
times the very same text is being encrypted. If the transmitted messages always
start with the same sequence of bits, as it would be with a standard RTF or
PDF file, there is a non-zero probability of guessing the initial elements of the
reusable key but not the whole one. This holds for the keys that are longer than
the fixed header of the files.

The simplicity of BARN allows for security measures that can be added
to practical implementations, especially for low-power devices like Internet-of-
Things (IoT). Practical testing of BARN showed that cipher sequences analyzed
statistically appear as not-so-good random sequences without any indication of
which bits were replaced. We did extensive testing of various plaintext inputs
and we found that BARN-encrypted messages are statistically indistinguishable
from random numbers simply because statistical tests reveal bad randomness
only for very long sequences of bits as a whole and not in the smaller sections.
Statistical analysis of various sequences generated with a wide range of key types
and lengths shows only slightly worse randomness of the cipher vs. real random
sequence and this does not allow for any decryption unless brute force checking
of all possible permutations of keys is tested.

4.1 Probabilities

Traditionally the number of permutations that need to be checked during a
brute-force attack on the cipher is expressed as the power of 2, hence Table 2
can be rewritten with the powers of 2 that represent the average number of
permutations for a given key:

Table 3. The powers of 2 that approximate the number of permutations in Tab. 2.

64-bit 128-bit 256-bit 512-bit 1024-bit

Ternary 16 32 64 128 256
Quaternary 38 76 152 304 608
Octal 50 103 207 418 836
Decimal 28 57 114 128 456
Hexadecimal 58 117 234 468 937



New Class of Ciphers Using Hardware Entropy Source 7

The numbers listed in Table 3 are very large indeed even for the short lengths
of the keys. For example, if the attacker can process 109 keys per second (multi
GHz processor), a 256-bit ternary key would require more than 584 years to
run through all possible messages - this time does not include checking which
messages make sense. We would like to point out again that lengthening the key
does not increase the computing load on the processor that encodes or decodes
the BARN cipher. Hence choosing even a longer key in the above example for
the ternary key requires the same computing power with just a little bit more
memory to store the longer key.

5 Summary

We showed in previous sections that BARN could be a very effective cipher
providing that real TRNG is available. BARN method and creation of possible
keys from a series of random numbers allow embedding into IoT devices with
limited computing resources. If TRNG can be placed on a chip, then the whole
system can be part of the System-on-Chip, which is the most secure solution.
There are various instances when different TRNGs are needed, i.e., TRNGs
that can generate different numbers of random bits per second. For the simplest
solutions, as previously mentioned, e.g. encoding of short text messages, a low
throughput TRNG of about 12 kbps would be enough. Cell phones limit sound
bandwidth to about 8 kbps by using G.729 codec [8]. BARN ternary keys would
enlarge encoded sound files by a factor of 1.5. This means that BARN cipher
with ternary keys and using 12 kbps TRNG will also suffice there. On the other
hand, for the encoding of files on the cloud, one would need TRNG with a much
higher throughput. For example, to encode 500 Mbps with the quaternary keys,
one would need TRNG that could generate random numbers at speeds of the
order of 1 Gbps. Such fast TRNGs would suffice to encode multiple video streams
for Video-On-Demand of movies to individual consumers. UltraHD video with a
resolution of 3840x2160 pixels requires a bandwidth of about 25 Mbps. 1 Gbps
TRNG can service at least 20 such streams simultaneously when ternary keys are
used. Practically, TRNGs with a total output of several Gbps can be mounted
on a specialized card, directly supplying enough random bits to a single server.
In between the above-described two extreme situations, TRNGs with moderate
throughputs of random bits and using octal keys can be deployed for better
security required by government, military, medical, etc. services.

We believe that the BARN method outlined in this paper can fill the niche
that presently is missing some practical cryptography methods because of high
computing needs for proven, secure ciphers like AES [3], especially in the post-
quantum cryptography, see e.g. projects sponsored by NIST [9].
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